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LETTER TO THE EDITOR

Functional optimization of online algorithms in multilayer
neural networks
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Abstract. We study the online dynamics of learning in fully connected soft committee machines
in the student–teacher scenario. The locally optimal modulation function, which determines the
learning algorithm, is obtained from a variational argument in such a manner as to maximize the
average generalization error decay per example. Simulations results for the resulting algorithm
are presented for a few cases. The symmetric phaseplateauxare found to be vastly reduced in
comparison to those found when online backpropagation algorithms are used. A discussion of
the implementation of these ideas as practical algorithms is given.

Learning how learning occurs in artificial systems has caught the attention of the statistical
mechanics community in the last decade (see, for example, [1–3]). This interest was ignited
for several reasons, among them, the invention of efficient learning-from-examples methods
such as backpropagation, that permit learning in computationally complex machines, to the
realization that ideas from disordered systems, in particular spin glasses, could be applied to
the study of attractor as well as feedforward neural networks and to the generalized interest
in complex systems with rugged energy landscapes. The Statistical Mechanics approach has
almost invariantly dealt with the thermodynamic limit and has benefitted from the powerful
techniques used to calculate the averages over the disorder introduced by the random nature
of the examples.

Among several possible approaches to machine learning, online learning [4] has been
the subject of an intense research effort due to several factors. In this scheme, examples
are used only once, thereby avoiding the need for expensive memory resources, typical of
offline methods. This, however, does not translate necessarily into poor performance since
efficient methods can be devised that have performance comparable to the memory based
ones. Furthermore, learning sequentially from single examples has a greater biological
flavour than offline processing. While efficiency, computational economy and biological
relevance may be the most relevant factors, the theoretical possibility of rather complete
analytical studies has also played an important role. If each one of these factors is, by itself,
sufficiently important to make online learning an attractive scheme, together they combine
to give a most compelling argument for its thorough study.

In this letter we present results of the optimization of online supervised learning in a
model consisting of a fully connected multilayer feedforward neural network, in what has
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become known as the student–teacher scenario. The type of result we present here brings
together two separate lines of research that have been recently pursued by several groups.

The study of online backpropagation as put forward by Biehl and Schwarze [5] and later
developed in [6, 7] has permitted the analytical understanding of several properties of the
dynamics of the learning process. The most striking feature being the existence of learning
plateauxor symmetric phases which signal learning stages where the information available
to the student and the form in which it is used do not permit breaking the permutation
symmetry among the hidden nodes. Further learning eventually permits the escape from
the neighbourhood of these repulsive symmetric fixed points into the broken symmetry,
specialized phase. The onset of specialization and different methods to hasten it have been
dealt with by several authors [8–11].

The second line of research from which we draw is the variational study of locally
optimal online learning. This program deals with the determination of lower bounds for the
generalization errors in different models in controlled learning scenarios. The constructive
nature of the variational approach has permitted finding update rules that lead to student
networks with the optimal generalization performance. The relation of this approach to
Bayesian methods has been discussed in [11] and in [12].

The variational method has been previously applied to machines with no internal units
[13–16] or with hidden units but non-overlapping receptive fields (RF) [17, 18] and also
in the case of unsupervised learning [18]. We will introduce the variational method for
feedforward machines with overlapping RF. The differences stem from the fact that while
in the former case the generalization error is a monotonic decreasing function of the order
parameters (student–teacher overlaps), in the latter, the monotonicity is lost, due to the
appearance of crossed overlaps.

The main results here presented are the analysis of the locally optimized online learning
dynamics of a soft committee. We present results for over-realizable and realizable cases.
The striking reduction or complete elimination of theplateaux in the learning curves
witnesses the great improvement achievable by concentrating in extracting the largest
possible amount of information from each example. Rapid escape from the plateaux can
be attributed to a fluctuation enhancing mechanism that stimulates permutational symmetry
breaking.

The aim of learning is to obtain a set of student weightsJik where i(= 1, . . . , N)
indexes input layer units andk(= 1, . . . , K) hidden nodes, in such a manner that the student
implements as closely as possible the map represented by the teacher network defined by
a set of weightsBin, wherei(= 1, . . . , N) labels the input layer unit andn(= 1, . . . ,M)
the hidden node. We usen,m, . . . to label teacher branches andj, k, . . . for the student
branches. CallBn = (B1n, B2n, . . . , BNn), Jk = (J1k, J2k, . . . , JNk) the weight branch
vectors andBn and Jk their respective lengths. We define as usual the order parameters
Rkn = Jk ·Bn, Qij = Ji · Jj andMnm = Bn ·Bm which will be takenMnm = δnm, for
simplicity.

At each time stepµ, an exampleSµ is drawn from a known distributionP(S). We call
6
µ

B and6µ

J the teacher and student outputs respectively. The internal fields are denoted by
y
µ
n = Bn ·Sµ andxµk = Jk ·Sµ. The available information is used in updating the student

weightsJik,

Jik(µ+ 1) = Jik(µ)+ Fk
N
S
µ

i . (1)

This is not the most general update possible since a decay term, useful in controlling the
length ofJk can be used, we however will not pursue this direction here. The central quantity
in this theoretical approach is the set of modulation functionsF = (F1, F2, . . . , FK). The
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following analysis will be done in the thermodynamic limit. For any transfer function,
the evolution of the order parameters is given by a set of(K2 + K)/2+ KM first-order
differential equations. For fully connected architectures we have:

dRin
dα
= 〈ynFi〉 dQij

dα
= 〈xiFj + xjFi + FiFj 〉 (2)

where as usual,α = µ/N measures the learning time. We now proceed, first to obtain the
bestF , from a generalization point of view, and then to analyse the dynamical consequences
that such a choice will have.

A point of technical importance, which in no way restricts the validity of the general
properties of the results here discussed, concerns the choice of an error function for
the sigmoidal transfer functiong of the internal units and a linear transfer function
for the output unit, following [5], since it permits better analytical tractability. Thus
6
µ

B =
∑

n=1,...,M erf(yµn /
√

2) and6µ

J =
∑

k=1,...,K erf(xµk /
√

2).
For a fixed teacher, the student network will have a generalization erroreg(Jk) =

〈 12(6µ

B − 6µ

J )
2〉S . In the thermodynamic limit, for a uniform distribution of examples, the

generalization error can be written as a function of the order parameters:

eg = 1

π

∑
i,j

sin(−1)

(
Qij√

1+Qii

√
1+Qjj

)
− 2

π

∑
i,n

sin(−1)

(
Rin√

2(1+Qii)

)
+ M

6
. (3)

Local optimization is obtained by maximizing the average generalization error decay for
each example in a given state(Rkn,Qij ). We thus look, following [13], at the extremes
of the functionalėg[F ] = deg[F ]/dα that is, the modulation functionF which satisfies
δėg/δFk = 0. The solution has the general form

F = H−1G〈y〉H|V − x (4)

where H, the functional Hessian matrix andG are defined asHij = δ2ėg/δFiδFj and
Gkn = −∂eg/∂Rkn and the conditional expectation is taken with respect to the assumed
examples’ probability distributionP(S). The symbolsH andV stand for the set of hidden
or visible information. It is interesting to note that (4) holds for any choice of transfer
function or examples’ distribution. For the particular case of examples drawn independently
from a uniform spherical distribution, we have to solve integrals of the form:∫ ∏

n

dyn PC(x,y)y
ε
mδ

(
6B −

∑
n

erf(yµn /
√

2)

)
(5)

whereε = 0, 1 andPC(x,y) is a (K +M) multivariate Gaussian with correlation matrix

C =
(
Q R
Rt M

)
. (6)

We now present results obtained by simulating anN = 5000 system for the cases
K = 2, M = 1 andK = M = 2. Further details will be presented elsewhere [19]. In
figures 1 and 2 we show the learning curves for these two cases. Backpropagation results,
for the same initial conditions, are included for comparison. Figure 3 shows the evolution of
Qik for theK = M = 2 case and suggests that the mechanism used to enhance fluctuations
and break the permutation symmetry is to increase synaptic vector norms and stimulate
anti-correlated weights.

Whether this solution of the variational problem leads to a maximum generalization or
not will be governed by the functional Hessian matrixH. Note that the dependence of the
dynamics on the modulation function is only second order, thereforeH is a function of the
order parameters and not explicitly of the particular algorithm that led to that state of affairs.
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Figure 1. Generalization error learning curves for theK = 2,M = 1 case obtained by simulating
a system ofN = 5000 with random initial conditionsQ11 ∈ [0, 0.5], Q22 ∈ [0, 1E − 6] and
Q12 ' 0. Full circles, optimized algorithm; open circles, conventional backpropagation with
learning rateη = 1.5. Inset, eigenvalues of the HessianH. There is a transient where the
smallest eigenvalue is negative, it then crosses rapidly into positive values.

Figure 2. Same as figure 1 but for theK = M = 2. Inset, eigenvalues of the HessianH. Note
that the smallest eigenvalue stays very close to zero in theplateau.

A negative eigenvalue ofH at a given point in the space of order parameters implies that
at that point an optimal algorithm cannot be analytically found.

The evolution of the eigenvalues for both cases is shown as insets in figures 1 and 2.
In the space of algorithms, for both cases, at the beginning of the learning process these
modulation functions represent saddle points rather than maxima. For the caseK = 2,
M = 1 this can be explained as follows. The best generalization would be obtained by
using acorrectarchitecture,K = M = 1, thus the optimal strategy is to trim the student into
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Figure 3. Evolution of the overlaps. Note the anticorrelation that builds up during the transient.
Inset, details of the escape from theplateau.

the correct architecture and then proceed with the optimized nonlinear perceptron algorithm
which could then be obtained by the above variational method. This kind of modulation
function cannot be obtained analytically by searching for zero derivatives in the space of
algorithms of theK = 2 student. The solution found by our method does cut out one of
the branches aroundα ≈ 1 and turns itself into an effectivelyK = 1 machine quite rapidly,
avoiding the longplateauof the backpropagation algorithm.

The explanation for the initially negative eigenvalue ofH in theK = M = 2 case is not
different. The optimal strategy is within the space of students with aK = 2 architecture
and asymmetric initial conditions, and thus it will not be found by the variational approach.
Before there is any information to hint that the permutation symmetry should be broken, it
is more efficient locally to learn with aK = 1 machine (with an output multiplied by 2).
This is however not true after a while, since thus it will never escape theplateau. Since
the escape is achieved by amplification of symmetry breaking fluctuations, learning initially
with a nonlinear perceptron cannot be globally efficient, for it totally suppresses the desired
effect of fluctuations.

A null eigenvalue ofH indicates the existence of a class of algorithms with identical
performance to that of (4), this can be interpreted as a kind offunctional robustness. An
example of this appears for the caseK = M = 2, where the smallest eigenvalue stays
very close to zero in theplateaustate (see figure 3). The significance of this is that due to
functional robustness, the exact determination of the modulation function is not very critical
for learning and eventually escaping theplateau.

Although our method permits the locally optimal extraction of information from an
example, it does not assure that the system will follow the best global trajectory in the
space of order parameters. The global functional optimization has been recently addressed
in [20]. They have shown the equivalence between local and global optimizations for the
boolean perceptron and the better performance of the global approach inK = 3, M = 1
case. A thorough investigation on how global and local optimizations are related is an
important issue and remains to be done.
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The effects of finite sizeN have not been systematically investigated and therefore
the advantages of these methods, if any, over conventional algorithms remains to be
proved. Nevertheless, learning is easier in smaller networks and a straightforward use
of the modulation function in regimes where the central limit theorem cannot yet be used
leads to a successful learning prescription as can be seen from simulating learning for the
rather small network withN = 15,K = M = 2 [19].

The main difficulties of using this approach to construct practical algorithms concern the
assumed knowledge of several unavailable quantities. First of all the examples’ probability
distribution is needed in order to calculate the integrals in equation (2). Then, the resulting
modulation function depends on unknown order parameters, such asRin, and worst, these
order parameters are only self-averaging in the thermodynamic limit. We first discuss rapidly
the first two points. Optimality is hard to define, several different possible criteria lead to
different results. Also, given a definition, such as the one we use here of maximizing
generalization, the optimal prescription will depend on the amount of available information
and on the environment where learning takes place. Although we do not attempt to
solve these problems here, a short digression is in order. A parametric representation
of P(S,6B) ≈ Pw(S,6B) permits introducing an extra set ofp differential equations for
the online estimation of the distribution parametersw = (w1, w2, . . . , wp). Also the order
parameters can be analogously estimated online, as has been done in [21], even in the case
of time dependent or drifting rules.

How robust these ‘optimal’ algorithms are in the absence or misestimation of this
information, as well as its response to learning in noisy environments remains to be seen.
The last issue has been addressed recently in [22] for boolean machines. They found a large
robustness to noise-level-misestimation, as well as efficient online noise level estimators
which manage to steer the dynamics into an efficient learning phase.

These comments about the need for extra knowledge to implement these methods as
algorithms can be seen as drawbacks for the variational program. We rather think of them
as calling our attention to the further work that has to be done in order to obtain efficient
adaptive practical algorithms, and pointing out directions in which these objectives can be
reached. Whatever point of view is chosen, the validity of these results and their relation
to improving the generalization ability remains.

The authors thank O Kinouchi and M Copelli for several useful discussions and M Biehl, P
Riegler, S Solla and C Van den Broeck for discussions during the early stages of this work.
This work received partial financial support from CNPq and Finep (RECOPE).
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